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New drug discovery in the pediatrics has dramatically improved survival, but with
long- term adverse events. This motivates the examination of adverse outcomes such
as long-term toxicity in a phase IV trial. An ideal approach to monitor long-term
toxicity is to systematically follow the survivors, which is generally not feasible.
Instead, cross-sectional surveys are conducted in Hudson et al. (2007), with one of
the objectives to estimate the cumulative incidence rates along with specific interest
in fixed-term (5 or 10 year) rates. We present inference procedures based on current
status data to our motivating example with very interesting findings.

Keywords Cardiotoxicity; Cross-section survey data; Interval censored data;
K-M method; Phase IV clinical trial.

Mathematics Subject Classification Primary 62N02; Secondary 62P10.

1. Introduction

Phase IV trials generally refer to studies performed after a drug is approved for
marketing objectives. The purpose for conducting a phase IV study is to elucidate
further the incidence of adverse reactions and determine the effect of a drug on
long-term safety, toxicity or morbidity of mortality. In addition, a phase IV trial
is also conducted to study a patient population not previously studied such as
children. In practice, phase IV studies are usually considered useful market-oriented
comparison studies against competitor products; see Chow and Liu (2004) and
Piantadosi (2005). Recent advances for cancer research in phase IV clinical trials
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has greatly benefited pediatric patients by improving the chances of long-term
survival. In addition to extending survival, preventing and ameliorating long-term
side effects of treatment is a key aim in contemporary phase IV clinical trials.
For example, anthracycline agents remain a critical component for many pediatric
malignancies because of their favorable therapeutic benefit, however, this treatment
has serious side effects such as cardiotoxicity; see Hudson et al. (2007), Krischer
et al. (1997), Sorensen et al. (2003) and Pein et al. (2004). It is not economically
feasible to evaluate patients frequently on a long-term basis to obtain the data
required to accurately estimate the onset time of cardiotoxicity, and hence reliably
estimate toxicity incidence rates. Although patients are followed longitudinally after
completion of cancer therapy, they are not routinely monitored in a consistent
pattern. Therefore, cross-sectional surveys are often undertaken to estimate the
prevalence of long-term side effects of cancer treatment and its predictors in a phase
IV clinical trial study. The actual onset times of these events are not known; only
the current status of the patient with onset prior to current status. This type of
incomplete data is commonly referred to as current status data (case I interval
censored data); see Sun (2006) and Rai (2008). The prevalence of toxicity can be
determined, but determination of the onset rate is not directly estimable due to the
interval structure of the data.

There are extensive discussions about nonparametric procedures in the analysis
of interval censored failure time data in the literature. The study of this problem
may be traced back to two independent articles, Ayer et al. (1955) and Van (1956).
They were the first to derive the nonparametric maximum likelihood estimation
(MLE) of a distribution function based on current status data, in which the
observation on each individual failure time is either left- or right- censored. Peto
(1973) and Turnbull (1976) investigated the estimation based on (general or case
II) interval censored data, which include at least a finite interval away from
zero. Frydman (1992) and Frydman (1994) proposed a nonparametric MLE for
the cumulative transition intensities in a three-state non-homogeneous Markov
process based on time between disease progression with irreversible transitions
for interval-censored data. An algorithm was provided for the computation of
the estimators. Later, Frydman (1995) considered the same estimation problem
in a three-state illness-death model, which generalized the results from Turnbull
(1976) and Frydman (1992). Recently, Meira-Machado (2006) studied the estimation
problem in non Markov multi-state Illness-Death models. For other studies about
the nonparametric estimation problem for interval censored data, please refer to
Gentleman and Geyer (1994), Groeneboom and Wellner (1992), Jongbloed (1998),
Li et al. (1997), and Wellner and Zhan (1997).

However, parametric approaches for interval censored failure time data are
limited relative to the extensive nonparametric work. Burridge (1981) introduced the
MLE in a class of regression models for interval censored data. Odell (1992) used
the MLE for a Weibull-based accelerated failure time regression model for interval
censored data. Lindsey (1998) studied the parametric regression models to estimate
the location and dispersion parameters and the models were compared based
on nine different distributions. Furthermore, Farrington (1996), Kooperberg and
Clarkson (1997), Lindsey and Ryan (1998), and Younes and Lachin (1997) proposed
and discussed some so-called weakly parametric models, which are parametric
in theory but provide good approximation to nonparametric models with the
increase of the dimension of space in which they belong. Sun (2006) provided an
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extensive survey of non-parametric methods of estimation using the EM algorithm
in studies involving interval censored data. In this article, we focus on estimating the
cumulative incidence rates in a parametric setting with a new area of application.

The remainder of the article is organized as follows. We will begin in Sec. 2 with
describing a study of the cardiotoxicity of anthracyclines exposure, which motivated
this project. Section 3 introduces the notation and presents the likelihood function
under a general model. We apply the general procedure to the exponential model in
Sec. 4 and study its properties through a limited simulation study in Sec. 5. In the
penultimate section, we apply the presented methodology to the motivating study
and compare with other commonly used procedures. Some concluding remarks and
discussion are given in Sec. 7.

2. Motivating Examples

Hudson et al. (2007) described a phase IV clinical trial study for investigating
the cardiotoxic effect of anthracyclines exposure during the cancer treatment.
Specific diagnostic groups of childhood cancer survivors were identified and
recruited from a long-term follow-up clinic at St Jude Children’s Research Hospital.
The diagnostic groups potentially at risk of cardiotoxicity included survivors of
childhood leukemia, lymphoma, sarcoma, and embryonal tumors all treated with
anthracycline chemotherapy and/or radiation involving the heart. The control
group was comprised of survivors of acute lymphoblastic leukemia, Wilms tumor,
and germ cell tumors who did not receive cardiotoxic treatment modalities. We
denote these two sets of survivors as AR (at risk) and NR (no risk) groups.
To measure cardiotaoxicity, there are many cardiac measures such as fractional
shortening, afterload, QTc interval, ejection fraction (see Hudson et al., 2007;
Krischer et al., 1997; Rai, 2008). Following Hudson et al. (2007), we consider
two outcome measures - fractional shortening (FS) and afterload (AF ). The main
measure is defined as FS = (LVEdD-LVEsD)/LVEdD, where LVEdD is the left
ventricular end-diastolic diameter and LVEsD is the left ventricular end-systolic
diameter. The other measure, afterload, can be described as the pressure that
the chamber of the heart generates in order to eject blood out of the chamber.
In addition to using actual measures of these dependent variables, FS and AF ,
threshold values were used to identify patients with abnormal FS, defined as less
than 0.28, and abnormal AF , as higher than 74g/cm2. Let AFS and AAF denote the
indicators of these abnormal or subclinical cardiac dysfunctions.

The study was planned to enroll almost equal number of patients from each
diagnosis group to detect a medium effect size increase in mean AF (or decrease
in mean FS) at � = 0�05 and � = 0�20, without adjusting for multiple outcomes or
multiple comparisons (comparing different disease groups with the same control).
This led to an imbalance in the AR and NR groups. The 278 patients who agreed to
participate in the study represented 22% of the clinic population of 1,268 patients;
223 were designated AR and 55 were designated NR based on treatment. At the
time of survey, data on each individual include demographics, the date of cancer
diagnosis, time since treatment completion, disease-related variables (such as type,
histology, and stage of cancer), treatment-related variables (such as chemotherapy
drugs, doses, irradiation), and outcome-related variables including cardiac measures
(FS and AF ) and quality of life measures (general health, vitality, and physical
health; see Cox et al., 2008). None of the patients had clinically defined cardiac
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dysfunction at the time of study evaluation. Non invasive assessment identified
abnormal dysfunction in relation to FS in 37 (13.6%) of 272; abnormal dysfunction
in relation to AF in 33 (13.9%) of 238; prolonged QTc interval in 11 (4.0%) of
273 patients. These represent the prevalence of cardiac abnormalities. One main
objective of the Hudson study is to estimate cumulative incidence rates of AFS and
AAF . More details about the phase IV study can be found in Hudson et al. (2007).

To estimate the incidence rates and obtain confidence intervals, one common
practice is to apply the Kaplan-Meier estimator and assume time of follow-up as
onset time, which is very crude. There are many measures of cardiotoxicity such
as FS and AF but not all patients have data on these two correlated cardiotoxicity
measures. There are other competing causes in such populations such as death
and other toxicities. Furthermore, some patients who were potentially eligible to
be enrolled on this study but died were not included in this retrospective study.
Generalizing the results from the selected group of survivors after adjusting the
sampling weights is another issue in such survey based studies. Estimating incidence
rates of cardiotoxicity in this study were complicated due to these factors. In this
article, we focus on estimating incidence rates of specific toxicity using a parametric
approach as alternative to Kaplan-Meier approach.

3. Notation and Likehood Function under a General Model

In Hudson et al. (2007), the study did not include patients who have died/cardiac
failed during the treatment or during the follow-up after completion of therapy;
however, this information was available from the medical record abstraction. Hence,
we present the general theory here for cross-sectional data with indicators of cardiac
abnormality and death, and time since the treatment to the survey or the death. We
assume cardiac abnormality is the precursor for cardiac failure.

Let stochastic process �X�t�� identify the state occupied by a patient at time t.
For simplicity, we suppose that n patients in state 1 at time t = 0 are those who
are identified with different cancer disease groups and are planned for treatment.
Additionally, we assume that no patient has cardiac abnormality at time t = 0.
Let the random variable T denote the observation time (death, cardiac failure or
survey) from the diagnosis and U the time of cardiac abnormality (such as AFS,
AAF ) from the diagnosis. Thus, X�t� = 1, X�t� = 2 and X�t� = 3 indicate the patient
alive with normal cardiac measure, alive with abnormal cardiac measure and died
with or without cardiac abnormality or cardiac failure at time t, respectively. We
also assume that the development of abnormal cardiac measure without any cardiac
treatment is an irreversible event, that is, the transitions from state 2 to state 1 do
not occur, as illustrated in Fig. 1. According to practice in this study, the patients are
chosen for survey independent of their health status, which ensures that the survey
results can be regarded as independent of the times of the events of interest. Note
that T and U are measured from the date of cancer diagnosis and are not the current
age of the patient.

The intensities �1�u�, �2�t�, and �3�t � u�, shown in Fig. 1, are transitions rates,
where t is the observation time and u is the time of cardiac abnormality. Using
these basic intensities, we define various quantities of interest. The pseudo-survival
functions corresponding to the intensities �1�u�, �2�t� and �3�t � u� are

Qi�t� = exp
{
−
∫ t

0
�i�v�dv

}
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Figure 1. An abnormal cardiac measure-death/cardiac failure model involving three states.
State 1 corresponds to patients who are alive with no cardiac abnormality. Patients who
are alive with abnormal cardiac measure are in state 2. State 3 is an absorbing state and
corresponds to death or cardiac failure.

for i = 1	 2 and

Q3�t � u� = exp
{
−
∫ t

u
�3�v � u�dv

}
	

whereas

Q�t� = exp
{
−
∫ t

0
��1�v�+ �2�v��dv

}
= Q1�t�Q2�t� (1)

denotes the probability that the time to the first event—alive with abnormal value or
death with normal value—exceeds t. Note that the survival function is calculated as

S�t� = Pr�X�t� = 1�+ Pr�X�t� = 2�

= Q�t�+
∫ t

0
�1�u�Q�u�Q3�t � u�du� (2)

Similarly, the cardiac abnormality prevalence function, which is the proportion
of subjects with abnormality in the population, is defined to be


�t� = Pr�X�t� = 2 �T ≥ t�

= Pr�X�t� = 2�
Pr�X�t� = 1�+ Pr�X�t� = 2�

=
∫ t

0 �1�u�Q�u�Q3�t � u�du
S�t�

� (3)

In our study, we observe 
(t) but are interested in estimating �1�t� =
∫ t

0 �1�u�du, the
cumulative incidence function, which is not straightforward to estimate using most
popular method by Aalen and Johansen (1978).

A general framework for constructing the likelihood function is given here. Let
� represent the full parametric vector, which includes the transition intensities. Let
ti be the realization of the random variable T and Ci be the contribution to the
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Table 1
Likelihood contributions for data from anthracycline cardiac toxicity study

Observation Type Outcome Likelihood Contribution

Death with T = t	 X�t−� = 1 L1�t� = �2�t�Q�t�
No Cardiac Abnormality
Alive with T > t	X�t� = 1 L2�t� = Q�t�
No Cardiac Abnormality
Death/Cardiac Failure T = t	 X�t−� = 2 L3�t�=

∫ t

0 �1�u�Q�u��3�t � u�Q3�t � u�du
with Cardiac Abnormality
Alive with T > t	X�t� = 2 L4�t� =

∫ t

0 �1�u�Q�u�Q3�t � u�du
Cardiac Abnormality

likelihood function, for the ith patient, i = 1	 2	 � � � 	 n. Then the likelihood function
is L��� = ∏n

i=1 Ci. Table 1 identifies the all possible types of observations in this
illness-death/failure model and the corresponding contribution to the likelihood,
denoted as L1�t�–L4�t�, which are functionals of intensities and pseudo-survival
functions. For the parametric model, various parametric forms of these intensities
(such as constant hazard rates, Weibull hazard rates, or a combination, etc.) can be
considered. We will derive the explicit form of L1�t�− L4�t� for Exponential model
(constant hazard rate) in the next section.

4. Analysis under Exponential Model

In this section, we apply the general inference procedure to the exponential model
and derive the resulting estimates. From a clinician’s point of view, the constant rate
of cardiac abnormality onset is easier to understand and still grossly valid. Our main
interest is to provide fixed-term (such as 5- and 10-year) cumulative incidence rates
along with standard errors or 95% confidence intervals. The actual time of onset
of abnormality, U , is not known. The observed quantities for each patient consist
of the observation time (death, cardiac failure or survey), T ; two status indicators,
� and , where � is an indicator of patients alive or dead/cardiac failure and  is
an indicator of patients with a normal or abnormal value. Let ti be the observation
time (death/cardiac failure or survey) for the ith subject. Then,

�i =
{
1	 if subject i dead/cardiac failure at time ti
0	 if subject i alive and no cardiac failure at time ti	

and

i =
{
1	 if subject iwith abnormal value at time ti
0	 if subject iwith normal value at time ti�

The simplified form of intensities �i�t� = �i for i = 1 or 2, and �3�t � u� = �3
lead to Qi�t� = e−�it for i = 1 or 2, Q3�t � u� = e−�3�t−u� and Q�t� = e−��1+�2�t. The
likelihood contributions L1�t� – L4�t� are

L1�t� = �2�t�Q�t� = �2e
−��1+�2�t
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L2�t� = Q�t� = e−��1+�2�t

L3�t� =
∫ t

0
�1e

−��1+�2�u�3e
−�3�t−u�du

= �1�3
�1 + �2 − �3

�e−�3t − e−��1+�2�t� and

L4�t� =
∫ t

0
�1e

−��1+�2�ue−�3�t−u�du

= �1
�1 + �2 − �3

�e−�3t − e−��1+�2�t��

Based on L1�t�− L4�t�, the log-likelihood function can be written as

l��1	 �2	 �3� =
n∑

i=1

�ai logL1�ti�+ bi logL2�ti�+ ci logL3�ti�+ di logL4�ti��

=
n∑

i=1

ai�log �2 − ��1 + �2�ti�−
n∑

i=1

bi��1 + �2�ti

+
n∑

i=1

ci�log �1 + log �3 − log��1 + �2 − �3�+ log�e−�3ti − e−��1+�2�ti ��

+
n∑

i=1

di�log �1 − log��1 + �2 − �3�+ log�e−�3ti − e−��1+�2�ti ��	 (4)

where ai = �i�1− i�	 bi = �1− �i��1− i�	 ci = �ii, and di = �1− �i�i are the
indicators corresponding to observation type 1 to type 4 in Table 1. We compute the
maximum likelihood estimators �̂1	 �̂2 and �̂3 of �1	 �2, and �3 as follows. From the
score function, it is easy to obtain �̂1	 �̂2, and �̂3 based on the following equations:

D3 +D4

�1
− D3 +D4

�1 + �2 − �3
− T2 +

n∑
i=1

�ci + di�ti
e��1+�2−�3�ti − 1

= 0

�2 =
D1

D3 +D4

�1

�3 =
D3

T1�1 −D3 −D4

�1	

where

D1 =
n∑

i=1

ai	 D2 =
n∑

i=1

bi	 D3 =
n∑

i=1

ci	 D4 =
n∑

i=1

di	

T1 =
n∑

i=1

�ai + bi + ci + di�ti and T2 =
n∑

i=1

�ai + bi�ti

which can be calculated from the data.
In our experience, we observed two patterns for unwanted effect of the cancer

treatment: (1) low prevalence rate early after the cancer treatment and then
(2) higher prevalence rate after some threshold time. In addition, in Hudson et al.
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(2007) the study cohort did not include the patients who died or had already
experienced cardiac failure. Pein et al. (2004) used K-M nonparametric approach
to estimate the cumulative incidence using only cardiac failure observations and
logistic regression on the combining cardiac failure and cardiac abnormality.

In the literature, Zelterman et al. (1994) applied successfully the piecewise
Exponential model to the survival history of a cohort of highly inbred male
Drosophila melanogaster and British coal mining disaster data. Therefore, we
further extend the model to allow the intensity �1 to be piecewise constant, which
is applicable to our data set. For simplicity and given the distribution of the
observation time in our data set, we assume two intervals: less than tc years and
tc years and above (say, tc = 5), and let these two rates be �11 and �12. We derive
expressions for general case and then the special case with �2 = �3 = 0 below.

First, we consider a general model with piecewise constants in parameter �1 and
derive the log-likelihood function as follows. For this model, Q1�t� = e−�11t if t < tc,
and if t ≥ tc,

Q1�t� = exp
{
−
∫ t

0
�i�v�dv

}
= exp

{
−
∫ tc

0
�11dv−

∫ t

tc

�12dv

}
= exp �−��11 − �12�tc − �12t�	

and Q2�t� = e−�2t, Q3�t � u� = e−�3�t−u� and Q�t� = Q1�t�Q2�t�. Thus, it is obvious to
get L1�t� = �2Q�t�, L2�t� = Q�t�,

L3�t� =
∫ t

0
�11e

−��11+�2�u�3e
−�3�t−u�du

= �11�3
�11 + �2 − �3

e−�3t�1− e−��11+�2−�3�t�

if t < tc, and if t ≥ tc,

L3�t� =
∫ tc

0
�11e

−��11+�2�u�3e
−�3�t−u�du+

∫ t

tc

�12e
−��11−�12�tc−��12+�2�u�3e

−�3�t−u�du

= �11�3
�11 + �2 − �3

e−�3t�1− e−��11+�2−�3�tc �

+ �12�3
�12 + �2 − �3

e−��11−�12�tc−�3t�e−��12+�2−�3�tc − e−��12+�2−�3�t�

and L4�t� = L3�t�/�3. Based on the following log-likelihood function,

l��11	 �12	 �2	 �3� =
n∑

i=1

�ai logL1�ti�+ bi logL2�ti�+ ci logL3�ti�+ di logL4�ti��	

the maximum likelihood estimates of �11	 �12	 �2, and �3 can be derived from score
equations using numerical method, such as Newton-Raphson method.

In our application, there were no deaths/cardiac failures. Hence, a special model
is considered here. That is, we have �2 = �3 = 0, ai = ci = 0, and

L2�t� = e−�11t	 L4�t� = 1− e−�11t if t < tc and

L2�t� = e−tc�11−�t−tc��12	 L4�t� = 1− e−tc�11−�t−tc��12 if t ≥ tc�
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Based on this special model, we have the log-likelihood function as follows:

l��11	 �12� =
n∑

i=1

bi logL2�ti�+
n∑

i=1

di logL4�ti�

= −∑
i∈S1

biti�11 +
∑
i∈S1

di log�1− e−�11ti �

− ∑
i∈S2

bi�tc�11 + �ti − tc��12�+
∑
i∈S2

di log�1− e−tc�11−�ti−tc��12 �	

where S1 = �i � ti < tc� and S2 = �i � ti ≥ tc�. Hence, the estimates of �11 and �12 can
be derived from following equations:

∑
i∈S1

biti −
∑
i∈S1

diti
�e�11ti − 1�

+ ∑
i∈S2

bitc −
∑
i∈S2

ditc
�e�11tc+�ti−tc��12 − 1�

= 0

∑
i∈S2

bi�ti − tc�−
∑
i∈S2

di�ti − tc�

�e�11tc+�ti−tc��12 − 1�
= 0�

5. Simulation Study

We conducted a limited simulation to study the properties of the procedure
proposed here. For simplicity, we consider the special model with an Exponential
distribution and there are no patients who died/cardiac failed before the last follow-
up. We estimate the piecewise values �̂11 and �̂12 of the parameter �1. The sample
sizes are chosen to be n = 50	 100	 200	 300, and 400. Two sets of pairs of parameters
values of �11 and �12 are 0�10 and 0�40, and 0�03 and 0�10. We consider maximum
follow-up times of 5 and 10 years. In our motivating example, the distribution of
the time to follow-up varied. Majority of patients had longer follow-up. To mimic
this situation, we assumed 20% patients had shorter follow-up and 80% patients had
longer follow-up. That is, 20% patients are at risk of cardiotoxicity with intensity
�11 and remaining 80% patients with intensity �12. In 5- and 10-years maximum
follow-up settings, the threshold times are 1 and 2 years, respectively. Two time-
scale (discrete and continuous) approaches for generating cardiotoxicity onset time
are considered (Rai, 2008). In the discrete scale model with maximum follow-up
time 5 years, events are observed on years 1,� � � , 5. In the continuous scale model
with maximum follow-up of 5 years, events can occur any time between 0 and 5
years. Similarly, these two time scale models are considered for maximum follow-
up time of 10 years. The simulation was repeated 5,000 times for all combinations
of sample size, the true values of �11 and �12, and the follow-up year. We use
the Newton numerical method to get the MLEs of �11 and �12 using software R.
Due to the possibility being negative values of �11 and �12 during the iteration of
the Newton method, we assume that �11 = e11 and �12 = e12 . The estimators, their
sample standard errors (SSE), and the average of the standard error estimates (SEE)
are presented in Table 2 for both the discrete and the continuous scale models. The
results indicate that the estimator proposed in this study is unbiased and both SSE
and SEE are almost same when the sample size n is as large as 200 in the most of
the cases.

In Table 3, we consider what will happen if the model is misspecified. We
generate the data from the same settings as in Table 2 with two components
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Table 2
Simulation results for piecewise parameters �11 and �12

Discrete Time Continuous Time

5-Year Follow-up 10-Year Follow-up 5-Year Follow-up 10-Year Follow-up

n Par
True
Value Est SSE SEE Est SSE SEE Est SSE SEE Est SSE SEE

50 �11 0.10 0.103 0.106 0.264 0.101 0.085 0.144 0.101 0.116 0.244 0.101 0.089 0.135
�12 0.40 0.412 0.113 0.157 0.430 0.136 0.153 0.413 0.124 0.165 0.430 0.140 0.154

100 �11 0.10 0.102 0.073 0.124 0.102 0.058 0.067 0.100 0.086 0.116 0.100 0.061 0.067
�12 0.40 0.406 0.076 0.089 0.413 0.084 0.085 0.409 0.090 0.097 0.413 0.086 0.088

200 �11 0.10 0.100 0.050 0.056 0.101 0.041 0.041 0.098 0.060 0.063 0.100 0.043 0.043
�12 0.40 0.403 0.053 0.054 0.405 0.057 0.056 0.406 0.061 0.062 0.406 0.060 0.059

300 �11 0.10 0.100 0.041 0.041 0.100 0.032 0.033 0.099 0.047 0.048 0.099 0.035 0.035
�12 0.40 0.402 0.044 0.043 0.404 0.046 0.045 0.403 0.049 0.049 0.404 0.048 0.047

400 �11 0.10 0.101 0.035 0.035 0.101 0.029 0.028 0.100 0.041 0.041 0.100 0.030 0.030
�12 0.40 0.400 0.037 0.037 0.403 0.039 0.039 0.403 0.043 0.042 0.404 0.041 0.041

50 �11 0.03 0.031 0.053 0.227 0.031 0.042 0.109 0.037 0.057 0.275 0.033 0.043 0.112
�12 0.10 0.103 0.044 0.090 0.102 0.036 0.055 0.100 0.050 0.111 0.101 0.038 0.059

100 �11 0.03 0.029 0.038 0.102 0.030 0.031 0.051 0.032 0.041 0.105 0.031 0.032 0.052
�12 0.10 0.101 0.030 0.048 0.102 0.026 0.031 0.100 0.035 0.054 0.101 0.027 0.034

200 �11 0.03 0.029 0.027 0.053 0.030 0.022 0.026 0.030 0.029 0.050 0.030 0.022 0.026
�12 0.10 0.101 0.021 0.028 0.101 0.018 0.019 0.101 0.025 0.031 0.101 0.019 0.020

300 �11 0.03 0.030 0.022 0.035 0.030 0.017 0.019 0.030 0.025 0.033 0.030 0.018 0.019
�12 0.10 0.101 0.018 0.021 0.101 0.015 0.015 0.100 0.021 0.023 0.100 0.016 0.016

400 �11 0.03 0.030 0.019 0.025 0.030 0.015 0.015 0.030 0.022 0.025 0.030 0.016 0.016
�12 0.10 0.100 0.015 0.016 0.100 0.012 0.013 0.100 0.018 0.019 0.101 0.013 0.013

but fitting with one component Exponential model. The table indicates that �̂1 is
between �11 and �12. Thus, the testing for the number of components is required
before deciding the final model and estimating onset rate.

Table 3
Simulation results with misspecified fitting model

Discrete Time Continuous Time

True Par Value 5-Year Follow-up 10-Year Follow-up 5-Year Follow-up 10-Year Follow-up

n 0.10 0.40 Est SSE SEE Est SSE SEE Est SSE SEE Est SSE SEE

50 0.10 0.40 0.290 0.058 0.072 0.267 0.048 0.059 0.282 0.060 0.079 0.266 0.050 0.061
100 0.10 0.40 0.286 0.040 0.050 0.264 0.033 0.041 0.280 0.041 0.055 0.261 0.034 0.042
200 0.10 0.40 0.284 0.028 0.035 0.261 0.023 0.029 0.279 0.029 0.039 0.260 0.024 0.030
300 0.10 0.40 0.284 0.023 0.029 0.261 0.019 0.023 0.279 0.024 0.032 0.259 0.019 0.024
400 0.10 0.40 0.285 0.020 0.025 0.261 0.016 0.020 0.278 0.021 0.027 0.259 0.017 0.021
50 0.03 0.10 0.077 0.025 0.042 0.075 0.019 0.028 0.075 0.026 0.050 0.074 0.019 0.030
100 0.03 0.10 0.076 0.017 0.029 0.075 0.014 0.020 0.075 0.019 0.035 0.074 0.014 0.021
200 0.03 0.10 0.076 0.012 0.021 0.075 0.009 0.014 0.075 0.013 0.025 0.074 0.010 0.015
300 0.03 0.10 0.076 0.010 0.017 0.075 0.008 0.011 0.074 0.010 0.020 0.073 0.008 0.012
400 0.03 0.10 0.076 0.009 0.015 0.075 0.007 0.010 0.074 0.009 0.018 0.073 0.007 0.011



Estimating Incidence Rate in Phase IV Trial 3127

6. Application to a phase IV Cancer Trial

We apply the exponential model discussed in Sec. 4 to the motivating example
and then compare with the nonparametric Kaplan and Meier (1958) and regular
maximum likelihood procedure to the interval censored data using SAS procedure,
LIFEREG Cary (2004). The Kaplan-Meier estimator was first derived in Kaplan
and Meier (1958), which is a simple non-parametric approach to time-to-event data.
In this case, it is assumed that the observation time is also the onset time for
patients who had abnormality to apply this procedure, which is commonly used in
the practice, Kaste et al. (2009) and Pui et al. (2003).

We use six approaches to compute the incidence rates. One is the nonparametric
approach based on K-M method (denoted by KM). Since there are no any events
before 5 years and very few events after 10 years, we consider three types of
Exponential models. The first one has a constant incidence rate (denoted by
Parametric-1), the second one is with two incidence rates (one up-to year 5 as
zero, the second one for year 5 and above, denoted by Parametric-2) and the third
one is with three incidences rates (one up-to year 5 as zero, the second one for
year 5 to year 10 and third one for year 10 and above, denoted by Parametric-3).
The approach based on SAS procedure, denoted by Interval-Censored-1 for entire
data and Interval-Censored-2 for two-piecewise by splitting data into two (one up-
to year 5 as zero, the second one for year 5 and above). The SAS procedure,
the Interval-Censored-2 approach, using year 5 as cut-off did not converge so
we used year 4 as a cut-off. In applying PROC LIFEREG for interval censored
data, the beginning and ending times are chosen as 5 years and the last follow-up
time if abnormal response, and the last follow-up time and missing otherwise. The
cumulative incidence functions and their standard errors based on these approaches
are presented in Tables 4–5 and Fig. 2 for AAF and AFS, respectively.

Table 4
Cumulative incidence functions for AAF

Nonparametric Parametric

KM Parameter-1 Parameter-2 Parameter-3 Interval-Censored-1 Interval-Censored-2

Year CI SE CI SE CI SE CI SE CI SE CI SE

1 0.000 0.000 0.016 0.003 0.000 0.000 0.000 0.000 0.015 0.003 0.000 0.000
2 0.000 0.000 0.032 0.005 0.000 0.000 0.000 0.000 0.030 0.005 0.000 0.000
3 0.000 0.000 0.047 0.008 0.000 0.000 0.000 0.000 0.045 0.008 0.000 0.000
4 0.000 0.000 0.063 0.010 0.000 0.000 0.000 0.000 0.061 0.010 0.000 0.000
5 0.000 0.000 0.079 0.013 0.000 0.000 0.000 0.000 0.076 0.012 0.025 0.004
6 0.000 0.000 0.095 0.016 0.030 0.005 0.040 0.007 0.091 0.015 0.050 0.008
7 0.005 0.005 0.110 0.018 0.059 0.010 0.080 0.014 0.106 0.017 0.074 0.012
8 0.009 0.007 0.126 0.021 0.089 0.015 0.120 0.021 0.121 0.020 0.099 0.016
9 0.021 0.010 0.142 0.023 0.119 0.020 0.159 0.029 0.136 0.022 0.124 0.020
10 0.074 0.021 0.158 0.026 0.149 0.025 0.199 0.036 0.151 0.025 0.149 0.025
11 0.178 0.033 0.174 0.029 0.178 0.030 0.203 0.034 0.167 0.027 0.174 0.029
12 0.186 0.034 0.189 0.031 0.208 0.035 0.207 0.034 0.182 0.030 0.199 0.033
13 0.211 0.037 0.205 0.034 0.238 0.040 0.211 0.035 0.197 0.032 0.223 0.037
14 0.245 0.043 0.221 0.037 0.267 0.045 0.214 0.037 0.212 0.035 0.248 0.041
15 0.272 0.049 0.237 0.039 0.297 0.050 0.218 0.040 0.227 0.037 0.273 0.045
20 0.528 0.113 0.316 0.052 0.446 0.075 0.237 0.062 0.303 0.050 0.397 0.065
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Table 5
Cumulative incidence functions for AFS

Nonparametric Parametric

KM Parameter-1 Parameter-2 Parameter-3 Interval-Censored-1 Interval-Censored-2

Year CI SE CI SE CI SE CI SE CI SE CI SE

1 0.000 0.000 0.013 0.002 0.000 0.000 0.000 0.000 0.013 0.002 0.000 0.000
2 0.000 0.000 0.026 0.004 0.000 0.000 0.000 0.000 0.025 0.004 0.000 0.000
3 0.000 0.000 0.040 0.007 0.000 0.000 0.000 0.000 0.038 0.006 0.000 0.000
4 0.000 0.000 0.053 0.009 0.000 0.000 0.000 0.000 0.050 0.008 0.000 0.000
5 0.000 0.000 0.066 0.011 0.000 0.000 0.000 0.000 0.062 0.011 0.020 0.003
6 0.000 0.000 0.079 0.013 0.024 0.004 0.035 0.006 0.074 0.013 0.040 0.007
7 0.004 0.004 0.092 0.016 0.048 0.008 0.070 0.012 0.086 0.015 0.060 0.010
8 0.016 0.008 0.105 0.018 0.072 0.012 0.105 0.017 0.097 0.017 0.079 0.014
9 0.044 0.014 0.119 0.020 0.097 0.016 0.140 0.023 0.109 0.019 0.097 0.017
10 0.084 0.020 0.132 0.022 0.121 0.020 0.175 0.029 0.120 0.021 0.116 0.020
11 0.150 0.027 0.145 0.024 0.145 0.024 0.175 0.029 0.131 0.023 0.133 0.024
12 0.157 0.028 0.158 0.027 0.169 0.028 0.176 0.029 0.142 0.025 0.151 0.027
13 0.199 0.034 0.171 0.029 0.193 0.032 0.176 0.029 0.153 0.027 0.168 0.030
14 0.224 0.037 0.185 0.031 0.217 0.037 0.176 0.029 0.164 0.029 0.185 0.034
15 0.224 0.037 0.198 0.033 0.241 0.041 0.176 0.029 0.174 0.032 0.201 0.037
20 0.282 0.053 0.264 0.044 0.362 0.061 0.176 0.029 0.225 0.042 0.279 0.054

We also conducted likelihood ratio test for piecewise Exponential and constant
Exponential models for AAF and AFS. The p-values are 0�017 and < 0�001 between
3-piece and 2-piece, and 0�026 and 0�018 between 3-piece and constant Exponential
models for AAF and AFS (see Table 6). That is, the fitting is significantly improved
using 3-piece Exponential model compared to using the constant and 2-piece

Figure 2. Cumulative incidence comparison for six methods. (color figure available online)
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Table 6
Likelihood ratio test for different piecewise exponential models

Log-likelihood p-value

Model Type AAF AFS Between AAF AFS

Parameter-1 −101�286 −111�161
Parameter-2 −101�695 −115�948 P-1 & P-3 0.026 0.018
Parameter-3 −98�821 −108�369 P-2 & P-3 0.017 <.001

Exponential models. This also indicated the importance about the selection of the
thresholds based on the data and experience. Note that the comparison between
Parametric-1 and Parametric-2 is not appropriate as they have the same degree of
freedom.

Furthermore, to find the effect of anthracyclines exposure, we fit the data
using proposed method by AR and NR groups, and both groups combined. The
results for Parameter-1 approach are presented in Fig. 3 for AAF and AFS. Using
the likelihood ratio test, the p-values for the group effects are 0.020 for AAF

and 0.215 for AFS under Parametric-1 approach. The group effects are detected
somewhat better in Parametric-2 approach (p = 0�012 for AAF and p = 0�171 for
AFS) and but are not detected significantly in Parametric-3 approach (p = 0�078
for AAF and p = 0�529 for AFS). The results for Parameter-2 and Parameter-3 are
presented in Figs. 4 and 5. Note that our approaches performed somewhat better
than Interval-Censored-1 approach (p = 0�024 for AAF and p = 0�229 for AFS) and

Figure 3. Cumulative incidence comparison between AR and NR for exponential model.
(color figure available online)
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Figure 4. Cumulative incidence comparison between AR and NR for two-Piece exponential
model. (color figure available online)

Interval-Censored-2 approach (p = 0�015 for AAF and p = 0�188 for AFS). Usually,
a logistic regression is used to detect the group effect in such data sets but may
give misleading results as observed here (p = 0�065 for AAF and p = 0�303 for
AFS).

Hence, we conclude that the proposed method is smoother than the K-M
method and compares favorably with commonly used SAS procedure. Also, the
piecewise Exponential model can be easily understood by the clinicians.

7. Discussion

We presented a well-established methodology in an illness-death model to apply
to a phase IV clinical trial evaluating cardiotoxicity in survivors of childhood
cancer. Although we assumed a very simple parametric model, it is straightforward
to expand to other parametric or semi-parametric models for the intensity to
accommodate possible confounders. From a clinician’s point of view, simple
approaches such as log rank test and KM survival curves are most commonly used
and understood. Using similar logic, our approach is simplistic, but still robust
as displayed by the data analyses for estimating fixed-term cumulative incidence
function on the prevalence data.

When studying the long-term effects of childhood cancer treatment in a
phase IV study, there can be multiple unwanted events identified at the time of
observation. Some of these events can be competing and others are correlated.
This leads to multivariate time-to-event data. One simple approach is to study the
incidence of first event and then the incidence of the specific event. In our example
cardiotoxicity included abnormal AF and FS. Suboptimal technical quality of some
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Figure 5. Cumulative incidence comparison between AR and NR for three-piece
exponential model. (color figure available online)

of the echocardiographic studies resulted in incomplete data for measures of AF and
FS, resulting missing values for these outcomes. By using models based on bivariate
time-to-event outcomes, we could include only those patients who had data on both
outcomes. However, it reduced the sample size. Hence, further research is needed to
develop a better procedure on this correlated data.

The study involved all the patients visiting the clinic in a pre-specified time
frame (such as 1 year of accrual) and represents a somewhat unbiased survey
of patients. Since the outcome measure depends on cancer diagnosis, an almost
equal allocation was used to enroll patients. As Hudson et al. (2007) reported,
the prevalence depends on the cumulative anthracycline dose administered to
specific diagnostic groups. Therefore, we need to adjust the sampling allocation and
variability due to sampling and modeling for generalizing the results for the entire
patient population Kovacevic and Rai (2002), which is another required extension
to this research.
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